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ABSTRACT 

We present, with numerical examples, several approximation techniques for solving 
some model problems in quantum mechanics. The emphasis is on matrix representations 
rather than differential or integral equations. Some of the methods are already known 
(extensions of the variational principle) and others are believed to be novel. 

I. INTRODUCTION 

Quantum mechanics is usually presented in two different forms. One is the 
Schriidinger differential (or integral) equation in which the independent variable 
x (or p) runs over the real line. The other is the Dirac-Heisenberg representation 
dealing with vectors in an infinite dimensional Hilbert space. The formal corre- 
spondence is established via the expansion 

(1) 

where the u,&) are some complete set of functions in x, which provide a basis 
in Hilbert space. 

When making approximate numerical calculations on some given problem which 
cannot be solved analytically, we most readily fall back on classical mathematical 
techniques which replace the differential or integral equation by some algebraic 
equations for the function on a finite set of mesh points. The variational method, 
with a linear superposition of trial functions, gives us the first connection with an 
approximation scheme which we can discuss in the Dirac-Heisenberg language. 
This is studied in some generalized forms in Section II. In Section III we present 
a couple of new methods contrived entirely within the matrix representation 
scheme; this is the most interesting part of our work, and we hope to see much 
more development in these directions. 

1 This research was supported in part by the Air Force Office of Scientific Research, Office of 
Aerospace Research, under Grant AF-AFOSR-130-66. 
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In all our examples we shall carry out computations at a sequence of orders of 
approximation N = 1,2, 3,... (N will be the number of mesh points or the number 
of trial functions or the number of dimensions in a restricted subspace of Hilbert 
space.) The “goodness” of any method is measured by the rapidity with which 
the desired answer EN converges to the exact answer E as N increases. 

Our first example, illustrating the classical method of discretizing the real line, 
is the simplest one we could think of which can be worked out exactly: 

Example 1: Calculate the lowest energy eigenvalue for a particle in a one- 
dimensional infinite square well potential. 

The differential equation and boundary conditions are 

-; $ $6) = -Wx), &tl) = 0. (2) 

We divide the segment (- 1, 1) of the x-axis into 2N equal intervals and then use 
the central difference formula, 

to convert (2) into the difference equation 

*AJ = *-AI = 0. (4) 

This is readily solved to yield 

-$T-2+ . ..). (5) 

The error here decreases as N-2, which we consider a very slow rate. For solving 
one-dimensional equations this is still probably the easiest method; for one can 
have a computer iterate over hundreds or thousands of points without work, 
worry, or cost of noticeable magnitudes. However, for multidimensional problems 
(the interesting ones) the situation is very different: in m dimensions, if we need N 
points per dimension to get the needed accuracy, then a total of Nm points will be 
involved in the computation. (The standard is often stated as, “Ten points per 
dimension, and nobody goes beyond three dimensions.“) This emphasizes the 
need for more efficient numerical techniques and places a premium on faster 
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convergence; so we now turn to the variational methods, which have the reputation 
of being most powerful.2 

II. VARUTIONAL METHODS 

We now make the standard transition from the Schriidinger equation to matrix 
mechanics. Starting with 

w  - E) 4(x) = 0, (6) 

where H is a given Hermitian operator in the variable X, we introduce the (infinite) 
expansion (1) to obtain 

(H - E) c aJfn(x) = 0. (7) 
R 

Now we left-multiply by U;(X) and integrate over x to obtain the infinite set of 
algebraic equations 

c Wmn - WA an = 0, (8) 
n 

where 

Hm,, = I u;(x) Hum(x) dx (9) 
and 

%m = [ dX4 d-4 dx. (10) 

If the basis functions U, are orthonormal, then N,, = 6,,, ; but this is not neces- 
sary. 

If we could not solve exactly the continuous Eq. (6) then we do not expect to be 
able to solve the infinite discrete system (8) either. This simplest approximation 
scheme is to truncate (8) to N equations in N unknowns a, , a, ,..., a, . The ap- 
proximation to the energy E is then the eigenvalue EN of an N x N matrix; this 
computation is readily carried out with the help of a computer once the basis 
is chosen. 

Example 2: The same problem as in Example 1. The exact ground state wave 
function is an even function of x with simple zeroes at x = f 1; so we choose the basis 

u1 = (1 - x2) 
u, = (1 - x2) x2 
us =(l -x2)x0, etc. (11) 

p Of course there do exist mesh point formulas more accurate than what we have used Eq. (3), 
and these give convergence at rates faster than that represented by Eq. (5). However, it is this 
authors impression that these techniques have not been sufficiently well refined for application 
to multidimensional problems. 
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The integrals (9) and (10) are elementary (one can also form these basis functions 
into orthogonal polynomials, but it does not affect the results), and the results are 
given in Table I. The convergence is fantastically rapid. The reason for this excellent 

TABLE I 

NUMERICAL RESULTS FOR EXAMPLE 2: LOWEST EIGENVALUE OF A SQUARE WELL 

N EN Error 

1 1.25 2 x 10-Z 
2 1.23372 2 x 10-s 
3 1.233700554 4 x 10-D 
4 1.2337005501365 3 x 10-18 
5 1.23370055013616984 1 x 10-l’ 
6 1.2337005501361698273545 2 x lo-= 
I 1.233700550136169827354311376 10-S’ 

Exact G/8 = 1.233700550136169827354311375 

behavior is not only that the trial functions have the right overall shape, but also 
that they have appropriate analytic properties. 3 The exact solution is a function, 
all of whose derivatives, in the region of interest, are finite; and the same holds 
true for the basis we chose. By contrast the calculation of Example 1 may be 
described in terms of a set of trial functions which are nonzero only within the 
segments 

i+l 
+n<--, 

and then matched so that value and slope are continuous. The lack of higher 
order differentiability then accounts for the slow (N-3 convergence rate of that 
calculation. 

Thus in the present method everything depends on the choice of basis functions 
U, . One wants them to be sufficiently elaborate to represent the important struc- 
tural details of the exact solution #; yet they must not be so complex that one 
cannot evaluate the integrals (9) and (10) required to set up the matrix. This bind 
is felt very keenly in the study of many-particle systems. The simplest trial functions 
to work with are just products of functions of the individual coordinates; yet one 
knows that there are important two-body correlations whose expansion in product 
functions is only slowly convergent. On the other hand, explicit correlation terms 
introduced into the trial function lead to very difficult multidimensional integrals 
for the evaluation of the matrix elements of H. 

S A semiquantitative analysis of the convergence rate of this type of calculation has been 
attempted by C. Schwartz in “Methods in Computational Physics,” Vol. 2, p. 241. Academic 
Press, New York (1963). 
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We shall now discuss a generalization of the standard matrix method presented 
above. Returning to Eq. (7) we left-multiply by some functions u$(x) and then 
integrate over x. The functions v, need not be related to the functions u,, ; we 
merely require for each of these two sets of functions that their members be 
(internally) linearly independent and that they ultimately become complete as 
their number approaches infinity. We now solve the same matrix Eq. (S), but the 
definitions of the matrices H and N become 

f&n, = j- 6Xx) Hu,(x) dx, U2) 

Nm, = I u:(x) urn(x) dx. (13) 

This general method of obtaining approximate solutions to the original Eq. (6) 
is called “the method of moments,“4 and its application to atomic physics has 
recently been discussed by Szondy [l]. 

Before we go on to discuss the merits of this method of moments and present 
some examples, we shall first show its connection with the variational principle. 
Given the eigenvalue problem 

Vf--)I#) =O (14) 

and its adjoint problem (H need not be self-adjoint) 

<#I(H--E)=O, (15) 
we consider the quantity 

4x, 4) = (x I H - E I d> (16) 

for any two functions x and 4. It is obvious that J is stationary with respect to 
arbitrary variations of the functions x and I$ independently when they are in- 
finitesimally close to (# 1 and ] $), respectively. In practice we shall construct 
some class of functions over which 4 can vary and do similarly for x. Then variation 
within these classes will give us a best C$ and a best x as well as a best estimate for 
the eigenvalue E, which we shall call E(x, 4). Let us now measure the accuracy 
of such a calculation by setting 

x = <# I + <A, I 

d = I *> + I 4) (17) 

E(x, 4) = E + 6E 

4 See, for example, L. V. Kantorovich and V. I. Krylov, “Approximation Methods of Higher 
Analysis” (translated by C. D. Benster), p. 150, Wiley (Interscience), New York (1958); or L. 
Collatz, “Numerische und graph&he Methoden” (Encyclopedia of Physics), Vol. ii, p. 438. 
Springer-Verlag Berlin (1955). The “method of moments” of F. R. Halpern [Phys. Rev. 107,1145 
(1957)] is a special case of this general scheme wherein one chooses U, = on = Hnuo , n = 0, 1, 2,... . 
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and substituting these into (16). We find 

Wx I 4) = -J(x, 4) + (A, I H - E I A,>, (18) 

which tells us that the error in E is measured by the product of the errors in the 
two wavefunctions (the quantity J is known as a result of the calculation, and in 
the methods to be used will always be zero). In the familiar case, x = 4, this is 
the usual statement that the error in the energy is of second order compared with 
the error in the wavefunction. In the general case we would only wish to know 
that the inner product (x I 4) does not vanish, and this will “usually” be so; 
however, this may occasionally cause us trouble. 

We shall use this variational principle with linear trial functions: 

x = f b,v, . 
WC=1 

(20) 

Then the variation of J with respect to the N parameters b, (or a,) leads to the 
N x N matrix problem which we had constructed above, (8), 

det I H,, - EN,, I = 0, (21) 

where H,,,, and Nmn are the same as (12) and (13). In this form, the value of J 
which goes into formula (18) is obviously zero, and we shall read formula (18) as 
follows. If we have two sets of N trial functions each, $1 and & , then there are 
three variational calculations we could do: 

(& , &) which leads to an error in the energy of a,, ; 

(4, , I&) which leads to an error in the energy of a,, ; 

($1 , 4,) which leads to an error in the energy of a,, . 

(22) 

These three quantities should be related approximately by 

6 12 m  @llw'2* (23) 

Thus if C& were an easy set of functions to work with but gave only modestly 
accurate results, and & were expected to give a much more accurate representation 
of the problem but matrix elements in this basis were too difficult to evaluate, 
then we could consider the mixed (+1 , dz) calculation as a way of getting inter- 
mediate accuracy with increased, but manageable, labor. 
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Another advantage of the method of moments over the usual statement of the 
variational principle is that it can readily be applied to nonself-adjoint equations. 
This point of view is in sharp contrast to the conclusion of an earlier work by 
the present author [2]. There, after several numerical examples, it was stated that 
a symmetric (i.e., self-adjoint) set of equations in an approximation scheme was 
much preferred to obtain good convergence. Where that conclusion pertained to 
the study of the New Tamm-Dancoff method, we have no new comment. However, 
in regard to the other simple examples adjoined to that earlier work, we must 
correct an error. Under Method I’ were presented two simple Schriidinger problems 
(a nonlinear oscillator and a Yukawa potential) which were solved after the 
equations were deliberately unsymmetrized. The results for the second of these 
two were just as good as for the usual symmetric variational method, but the 
first, the n” oscillator, showed terrible convergence behavior (see Figs. 2 and 3 
of Ref. 2). We have now found that a programming error was entirely responsible 
for this result, and a corrected rerun of that example has given very nice conver- 
gence, in harmony with the results of the other new examples we shall now present. 

Example 3: Solve for the ground state of the hydrogen atom by using the basis 
functions 

).n--led , n = 1, 2 ,..., N. (24) 

Of course with 01 equal to 1 we get the exact answer with the first term, so we fix (y. 
away from 1 and study the convergence of the Nth approximation to the energy 
toward the exact value. In Fig. 1 are plotted some results from the calculations 
using (y. = 4 for the set dl and 01 = 2 for the set & . The relation (23) is very well 
substantiated by the fact that the curve for the mixed calculation (2,4) lies midway 
between the two curves (2,2) and (4,4). We can even take from the reference 
cited in footnote 3 the estimate for the convergence rate for this problem 

I EN - Em I - const G(q) Ma,> 

(25) 

and the curves of Fig. 1 are quite well fit by this formula. 

Example 4: The ground state of the helium atom. The general type of basis 
function we consider is that introduced by Hylleraas: 

s = rl + r2 t = r, - r2 u = r12 . (26) 
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12 3 4 5 6 7 8 9 IO 

N 

FIG. 1. Numerical results for example 3: convergence of a mixed basis calculation of the ground 
state energy of hydrogen. 

For the ground state n is even, and the basis elements will be grouped and ordered 
according to the value of the sum I + m + n; the value of the scale factor k is 
kept fixed at 3.7. 

The basis dI will consist of the subsets of (26) for which the index m is an even 
integer. From the equation 

12 = r 12 + r22 - 2r,r, cos Ii?12 (27) 

we see that this consists simply of product functions in the coordinates of the two 
electrons; this may be identified with the so-called configuration interaction basis. 
This is the simplest type of trial function to use in atomic structure problems, 
but we know that convergence will be slowed down by the lack of the odd powers 
ofr12 ; we have in fact the exact condition 

Y x const[l + i r,,l. (28) 
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We take for our second basis q$ just the same set as for +I , but with each element 
multiplied by the factor (1 + 4 r12) so that the property (28) will be exactly satisfied. 
The results are shown in Fig. 2. The curve (2,2) shows results considerably more 

I 2 5 8 14 20 30 40 55 70 
N 

FIG. 2. Numerical results for example 4: convergence of a mixed basis calculation of the 
ground state of helium. 

accurate than the curve (1, 1) as expected; furthermore the curve for the mixed 
(1, 2) calculation has a slope which is just about halfway between the slopes of 
the (1, 1) and (2,2) curves, as predicted by (23). The fact that the (1,2) curve lies 
lower than halfway between the other two is probably just an accident. 

As far as the two-electron atom is concerned, there is nothing exciting about 
these results, since that problem has already been worked to death. However, 
for many-electron atoms we have here a way of putting some two-body correlation 
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into the wavefunction (on one side of the variational principle only) without 
making the computation of the required matrix elements too difficult. This will 
need further study. 

We should complete this example by considering the third basis CJ$ consisting 
of all the Hylleraas functions (26). The curve (3, 3) in Fig. 2 shows extremely 
rapid convergence compared with our other curves. However, when we attempted 
the mixed calculation (1, 3) we encountered our first failure. The results were so 
erratic that we could not sensibly plot them in Fig. 2. It seems that the trouble lay 
in the term (x / 4) on the left side of Eq. (18); that is, the matrix N,, was singular. 
For the usual symmetrical case this matrix is always positive, and for the non- 
symmetrical examples we have done up until now we could show again that N 

was positive; but in this (1, 3) example we were able to see that N had zero eigen- 
values, and this apparently not only allows trouble to develop but forces it to occur. 
Some further study to learn what to do in these cases is needed (see Appendix V). 

III. SOME PURELY MATRIX TECHNIQUES 

In matrix mechanics we are given the Hamiltonian Has some specified function 
of x and p; x,p, and H are all infinite matrices. Our objective is to invent ways 
of constructing finite matrices (x), (p), and (H) which approximate these, and 
then we can easily calculate the eigenvalues and eigenvectors by mechanical 
means. There is almost nothing to be found in the literature5 on such approximation 
techniques, and we should feel free to invent many games. The most obvious 
hurdle to be overcome is the canonical commutator condition 

xp - px = iI; (29) 

this cannot ever be satisfied by finite matrices, and we shall have to learn how to 
approximate this equation. 

Instead of trying to discuss many possibilities which we were not able to carry 
out, we shall present below a couple of successes which we have found. Our first 
step (and a rather conservative one) is to choose some known representation for 
the matrices (a), (b), etc., where a, b, etc. are the variables in the problem; then 
we simply carry out algebraic manipulations on these finite (truncated from the 
infinite) dimensional matrices: 

lab) w  GO@). (30) 

6A recent paper by D. I. Five1 [Phys. Rev. 142,1219 (1966)] stands as an exception to this state- 
ment. 
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Example 5: The nonlinear oscillator 

To define our basis we consider the known linear oscillator problem 

with some natural frequency w  chosen for convenience. In the basis of the eigen- 
vectors of H,, we can construct the well-known infinite matrices 

x, P, x2, P2, x4 (33) 

and then truncate these at dimension N to get 

<x>, <P), <x2), <P2), G-9. (34) 

For our first game we simply take 

00 = 4(p2) + W) (35) 

and then compute the eigenvalue EN. It should be obvious that this is not a new 
game, but it is exactly the same as the variational method of Section II. Numerical 
results showing very rapid convergence for the ground state are shown in Fig. 3. 
(We have used w  = (3/2)‘/“, and these results were already given in Ref. 2.) 

For our second game we use instead of (x4) the result of the finite matrix multi- 
plication 

<x2> - <x2> (36) 

to get (H). The resulting eigenvalues are also shown in Fig. 3, and we see that the 
convergence is just as good as that of the first game above. 

Finally, for the third game, we go all the way with 

GO = UP) . (P) + t(x) * <x) . Xx) . <x). (37) 

These results, also shown in Fig. 3, again converge just about as well as those of 
the first game. 

Games two and three may be read as further approximations made within the 
N x N approximation of the usual variational method (game one). It is delightful 
to see that nothing essential has been lost in this way, and maybe much flexibility 
has been gained. (The new results do oscillate about the exact answer while the 
old method gave strictly an upper bound, but we consider this an unimportant 
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aspect of the convergence study.) After having found these results we can justify 
them as follows. The difference between say (x2) and (x)(x) lies only in the farthest 
corner of the N x N matrix. The eigenvector which we are constructing has only 

EN-E 

IO0 

Id 

IO2 

Id3 

IO4 

lG5 

ICP 

Ia7 

Ids 

0 

-I@ 

-Ia7 

-I@ 

-ICY5 

“us4 

xi3 

-ICY2 

-16’ 

-IO0 

\ <H> = 
\ 

‘,, <H> = 

“Q,. <H> = 

I 2 3 4 5 6 7 0 9 IO II I2 I3 I4 N 

FIG. 3. Numerical results for example 5: convergence of three different matrix representations 
for the ground state of the nonlinear oscillator (31). 

a very small component in this last element of the space (this we know because 
the first method was converging rapidly), and so the additional error is quite 
insignificant. 

It is rather difficult to develop a feeling for how to measure the ‘“smallness” 
of the error made in some general approximation method which might be suggested, 
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and this is the biggest drawback to progress in these searches. Thus, because of 
the formal equation (29), we were very hesitant about ever even attempting game 
three. One can easily see the error made here: 

0 

1 3 T (38) 

and the matrix on the right does not look small (cf. Appendix II). 
This exercise with the oscillator has been amusing and possibly stimulating, 

but it is not a problem of practical interest. We turn now to another example of 
these games which may be somewhat practical. 

Example 6: In a recent work [3] on scattering calculations we were led to 
rewrite the standard equation for the T-matrix, 

T= V+ VGT, 

where 
G = (E - Ho + ie)-I, 

in the form, 
V-IT = Z + GT [see footnote 61; 

and then construct the symmetric variationalprinciple 

(39) 

(40) 

(41) 

[T] = 2T + TGT - TV-lT. (42) 

Trial functions were then introduced for T, and the integrals could be easily carried 
out for a simple potential V(r). However if V were some more complicated operator 
we wondered how one could effectively evaluate the matrix elements of (V-l), 
and our suggestion is now to try to use (V)-l instead, in the same spirit as we 
played games with the oscillator problem. However, since we shall be dealing with 
a nonorthonormal basis for these matrices a little formal preparation is necessary. 

Given two complete sets of functions, U,(X) and v,(x), we construct the general 
resolution of the identity: 

8(x - Y> = c M, I u&D Kwn(%d~)l N, , 

61f one rewrites this as T1 = V-l + (Ho - E)-‘, an amusing analogy with electric circuit 
theory is suggested. 
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where M and N are any two nonsingular operators and the numbers W,, will now 
be determined. If we multiply (43) by (Q(X) ) N, and integrate over x we get 

(~(~91 N, = 2 (uk I NM I zi,> Wn,(u,( y)l Ny ; (9 
n.m 

thus from the assumed linear independence of the functions V, we can conclude 

Now using (43) we can expand the general matrix element of a product as 

(UK I AB I ud = c (uk I AM I un> Wnrn<~, I NB I ut). (46) 
n.m 

This is so far rigorous, but we now use the notation (X) to mean the finite (N x N) 
matrix of elements (uk I X I z&/c, e = 1,2,..., N, and we have our approximate 
matrix multiplication formula 

(AB) c=a (AM)(NM)-l(NB). (47) 

For the case M = N = I, and (ulc I ZQ) = &, this is just the formula 

CAB) - C-4 * 00 

which we used above, Eq. (30). For the present problem we choose A = KS, 
B = S-lL, and then manipulate (47) to get 

(NS-lL) w (NM)(KSM)-l(KL). (48) 

Now, getting back to the scattering calculation, consider the potential 

V = e-+/r. (49) 

The trial functions for T (which is V#) behave like l/r near the origin so that the 
matrix elements J TVT are not defined. We therefore make the following break-up 
to use formula (48): 

K=N=r, S = e-?, L=M=l; (50) 

(ET> w (r)(re-7}-1(r). (51) 

The matrix elements in (51) are now easy to calculate, and so we repeated the 
phase shift calculation given in Ref. 3 by using the result of the matrix mani- 
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pulation of Eq. (51) to replace (V-l). The results were not very good; with 
sufficiently careful handling of the data one could see some convergence to the 
right answer, but the situation was not clear and at best the convergence was 
quite slow. The following discussion seems to be a reasonable explanation of this 
poor result. 

We should expect that for the truncated Eq. (48) to be accurate the finite basis 
that we have kept must be able to give a good representation of the operators S 
and S-l. In the above example S and S-l are two very different operators in the 
region of large values of the coordinate r, and the large r region is probably not 
negligible in the scattering problem (as it might be in a bound state problem). 
However, the trial functions used went as rne-aT, and these functions are not very 
efficient at building up behavior at large r. Ideally we should arrange to invert an 
operator S which is as close to the identity as we can manage. The choice 
K=N=V-l,S=l,L=M=lleavesuswith 

(V-1) M (V-1)( V-1)-1( V-l), (52) 

which is an identity and not interesting. 
Now we are led to consider a more complex situation: 

oc, 
r (53) 

TABLE II 

NUMERICAL RESULTS OF CALCULATIONS OF THE SCATTERING LENGTHY 
(a = -tans/k at k = 0) FOR THE POTENTIAL V = -2(e-*/r)(l + oe-3 

N aforo = 0 afora = 2 aforo = -2 

1 8.0938697 1.9231311 0.0529962 
2 8.0086267 0.3977105 -1.1506452 
3 7.9122814 0.5427499 - 1.4369220 
4 7.9117816 0.2816501 - 1.4814346 
5 7.9117804 0.2947919 - 1.5078973 
6 7.9114674 0.2687904 -1.5101818 
I 7.9114205 0.2692808 -1.5111852 
8 7.9113885 0.2668049 -1.5113125 
9 7.9113829 0.2667269 -1.5113533 

10 7.9113807 0.2664709 -1.5113611 
11 7.9113804 0.2664439 -1.5113621 
12 7.9113802 0.2664083 -1.5113624 

a The basis functions for the N x N matrices are those given in Ref. 3 with a = 1.8; and the 
matrix of V-l is constructed according to (48) and (54). 
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and make the decomposition 

K = N = ($)-l, S = (1 + ue-3, L = A4 = 1. 

Here the quantity S which our matrix must invert varies very little from unity, 
and the envelope of the function V, is handled exactly by the N term. We carried 
out numerical calculations with the potential -2V,, and Table II shows the 
results. For (T = 0 this is just a repeat of the old method, which converges very 
nicely; the convergence for the cases CT = +2 and cr = -2 appears to be just 
about as good, and this is very satisfying. The situation for CJ = -2 is particularly 
delightful since this potential has a node and the original matrix elements (V-l) 
would have been somewhat tricky to handle, but in this matrix inversion game 
apparently everything took care of itself automatically. 

SUMMARY 

Several new or expanded techniques for approximation schemes have been 
discussed and illustrated. It is expected that these will add to our flexibility and 
power to attack hard problems in the future. It is also hoped that further invention 
in the realm of matrix games will be stimulated by our novel successes of Section III. 
Our mathematical discussions about the theoretical soundness of the methods 
are admittedly very weak; most of our work has been really “experimental 
numeracity.” 

The appendices present several discussions attemuting to explore further various 
peripheral questions rvised by our studies. 

APPENDIX I. EIGENVALUES OF NON-HERMITIAN MATRICES 

In Section II we considered non-Hermitian matrices representing the Hamiltonian 
of some problems and then computed eigenvalues. We are familiar with the theorem 
that any eigenvalue of a Hermitian matrix must be real. We now ask the question: 
Should we be surprised that an eigenvalue of a non-Hermitian matrix comes out 
to have zero imaginary part ? It is a fact that in all the numerical examples presented 
here, we had no difficulty in finding purely real eigenvalues when we looked for 
them. 

Imagine that we can choose a basis in which the matrix in question is real (this 
is so in all our examples). Now start with a symmetric matrix which is somehow 
close to the given one, and then continuously vary the matrix elements until the 
actual matrix is reached. The eigenvalues of the starting (symmetric) matrix all lie 
on the real axis, and then they all move continuously as the matrix is varied. 
Since the secular equation has purely real coefficients, any nonreal roots must 
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occur in complex conjugate pairs. Thus the only way in which any eigenvalue can 
move off the real axis is for two eigenvalues to meet on the real line and then go 
off into the complex plane as a reflected pair. 

The above discussion is intended to show that it is not completely easy for 
eigenvalues to leave the real axis; we can add only a plausibility argument to say 
why in our examples they in fact did not become complex. If the two sets of 
functions U, and v,,, introduced in Section II do indeed give a good representation 
of the actual wavefunction #, then we may expect the emerging eigenvalue spectrum 
to be a good approximation to the true spectrum. The true spectrum consists of 
well-separated points on the real line, and so we may not be surprised that there 
has been no opportunity for the approximate eigenvalues to meet and then become 
complex. 

APPENDIX II. THE COMMUTATOR PROBLEM 

In Section III it was noted that the canonical commutator condition, Eq. (29), 
could never be satisfied by finite matrices trying to represent the operators x and p, 
and furthermore it was not clear how to measure the amount of error one may 
tolerate in approximating this condition. We present here another attempt which, 
by its failure, further illustrates this situation. 

Assume that we are working in the space of N x N matrices, we have some 
Hermitian matrices x and p, and we want to study the error matrix 

A = [x, p] - iz. (Al) 

We would like d to be small in some sense, so let us consider the error function (5 
defined by 

CZ = trace d+Ll = f 1 d,, 12. 
s.B=l 

642) 

In order to proceed it is convenient to change basis; since x is Hermitian there ’ 
is a unitary matrix U which will diagonalize it. 

x = usu+* , u+u= uu+=I; p = uju+ 
(A3) 

X.x8 = %JLp * 

We now calculate the error function, 

(A4) 
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and find that its minimum occurs for 

I &3 I = 0 if R, f ZflB , (A5) 

which is precisely the condition that p and x commute. This is a ridiculus situation 
since, for example, it implies that the Hamiltonian will be diagonal when x is. 
By contrast, the approximation made in Example 5 [Eq. (38)] gives an error 
e = N2 compared with e = N above, but that approximation worked very well. 

APPENDIX III. ACCURACY OF THE MATRIX APPROXIMATIONS 

In Section III we approximated infinite sums by finite sums in order to play 
some new matrix approximation games. Let us look at the error made in going 
from the exact Eq. (46) to the approximate equation (47); the terms lost can be 
separated as 

where the summand in each case is 

646) 

(A71 

643) 

We now wish to show that the first two terms, (A6) and (A7), are effectively 
zero, and thus the error (A8) may be said to be small of second order. Consider 
the set of functions U, for n > N; the calculation in our N-dimensional subspace 
should be unaffected by a redefinition of the basis outside this subspace, and so 
we choose to make these “outside” U, orthogonal to all the “inside” v,(m < N), 
via the weighting operator NM. We redefine similarly the outside v, to be ortho- 
gonal, via NM to the inside u, . Thus the infinite matrix NM reduces to an N x N 
block and an (cc - N) x (cc - N) block with no connecting elements. The 
matrix W is just the inverse of NM, and so it too has no elements connecting the 
“in” to the “out” bases. There may be some conditions necessary for the above 
analysis to be correct (e.g., if the set u,, is identical with the set v, then we would 
like NM to be Hermitian, or at least normal) but we expect they can easily be 
satisfied. 

This second order smallness for the error in our matrix manipulations is similar 
to the second-order smallness in the error in the eigenvalue as given by the varia- 
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tional principle, and this may explain why we get comparably accurate results 
with our new games as with the older methods. 

APPENDIX IV. RECURSION METHODS 

One of the oldest methods for solving differential equations is to make a power 
series expansion, collect terms of a given power, and thus get recursion formulas 
for the expansion coefficients. We wish to see now how this general method may 
be compared with the general method of moments of Section II. Let us start with 
the general equation 

et) = 0, (AlO) 

where B is some linear operator. We postulate the approximate expansion 

(All) 

and the assume that we can find some recursion formula which gives the result 
of 8 acting on each u, : 

i!u,, = c BtnwG . (A13 
G 

In general the two complete sets U, and w, need not be identical, and the sum (A12) 
may contain an infinite number of terms. The appropriate equation now reads 

6413) 

and since there are N unknowns a,, , we set separately to zero the coefficients of 
the first N (linearly independent) functions w: 

f &an = 0 G = 1, 2 ,..., N. 
.?I=1 

6414) 

The first question we wish to ask about this recursion method (A14) is: When is 
this equivalent to some form of the method of moments? Starting with (AIO) 
and (All) the method of moments gave the approximate solution as: 

where 

2 gm,an = 0 m = 1, 2 ,..., N, 
R=.l 

2 mn = <%I I 2 I %>, 

(A151 

(A161 
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and the functions c, have been chosen somehow. By using (A12) we can write this 
matrix element as 

i? mn = ; <urn I w) Bdn 

W7) 
= %z?l + %&l, 

where the sign c indicates-those terms of the sum (A17) for which & < N and 
the sign > indicates those for which 8 > N. Now if the term fL?’ vanishes, then we 
can see that (A15) is equivalent to (A14), and thus the two methods are the same: 
we need simply multiply the equations (A15) from the left by the inverse of the 
matrix 

S,, = (u, / wk) m, k = 1,2 ,..., N, (AW 

and we are assured that this inverse exists. 
The easiest way to assure the vanishing of 8’ is to require 

(v, 1 wd) = 0 for all m = 1, 2, . . ., N and all G = N + 1, N + 2,. . . . (A19) 

This (A19) is thus a sufficient condition for the equivalence of the two methods. 
We cannot prove that it is also a necessary condition, but would guess that it 
probably is. The simplest way in which to satisfy (A19) would be to have an 
orthogonality condition, 

(Gn I wd = hnd. 6420) 

[The following argument-patterned after what we did in Appendix III-might seem to 
make the above equivalence more general. Suppose, for simplicity, we had w, = Us . Let us define 
a new set of functions ub as 

u:, = u, n = 1, 2,..., N 

u:, = u, + n = N + 1, N + 2,... . (A211 

We can choose the coefficients A so as to satisfy condition (A19) by the Schmidt orthogonalization 
procedure. Since the functions u,, for n < N have not been changed, one might think that we have 
now demonstrated a more general equivalence of the two methods. This is a false conclusion since 
now the matrix B actually has been changed. For example, suppose that contained in the original 
recursion formula was 

Cu, = BN+l,N~N+l + other things. G42-3 

Our truncation procedure would tell us to drop this u N+l term. However, after the redefinition 
(A21) the right side of (A22) would contain terms 

which we must now keep.] 
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We would next like to try to answer the question: If the recursion method is 
not equivalent to a variational method, does it have the same general order of 
accuracy, or is it expected to be worse? It is our guess that in general the recursion 
method is accurate only to first order and thus is weaker than the variational 
methods. For example, consider again the infinite square well and take as the 
expanded wave function 

44iv = fl w  - e. 6424) 

Substituting this into the wave equation and collecting powers of (1 - x2) we 
get the algebraic system 

4@+ 1) cc+1 - 2&2tf-- 1) Cc -I- 2E&., = 0 G = 1, 2,..., N (A25) 

with the constraints 

co = c,,, = 0. WQ 

The eigenvalues EN are readily computed and the results converge at just half 
the rate of those from the variational method shown in Table I. (Thus at 15 terms 
of the present development we get an eigenvalue which is as accurate as that 
obtained with 7 terms in the previous scheme.) This is the first-order accuracy we 
claim will generally result from these schemes. Obviously if we reorganize the 
basis (A24) we will get different results because the matrix B will be changed, 
and it appears that the best reorganization would be to get some appropriately 
orthogonal polynomials, for then-by the above discussion-we would be back 
at the variational method with its second order accuracy. 

In an attempt at a more general analysis of the accuracy (first or second order) 
of the recursion scheme we can proceed as follows. From the general problem 

with the expansion 

e* = 0 e27) 

* = c G&I 5 WV 

we get by our recursion (or any other) method the infinite matrix problem 

B-c=0 6429) 

which exactly represents the original equation. The Nth approximation amounts 
to truncating this to an N x iV matrix problem 

B -c=o, 6430) 



NUMERICAL TECHNIQUES IN MATRIX MECHANICS 111 

and if A is an eigenvalue in (A29) then x is the corresponding eigenvalue in (A30). 
We can postulate the existence of dual vectors d and d which solve 

d.B=O (A31) 

d-23=0. 6432) 

If we write, for concreteness, B = K - XM then we can do the standard error 
analysis: G433) 

(alB(X)Ic^)=(dIB(h)(E)+(h--)(d[M(c”) 

=(dIBIc)+(d-dIBIc)+(dINIE-cc) 

+(d-dIBjE-cc)+@--)(dIMIE). 6434) 

The left-hand term is zero by (A30) or (A32), and the first three terms on the 
right are zero by (A29) and (A31); and so we have 

(x-h)(t-fIMlE) =(d-d]BIE-cc), G435) 

which is just like Eq. (18) and gives us the mixed second-order accuracy. The 
problem is to be able to estimate the error associated with the approximation 
(N term truncation) of the dual vector d (we presumably start with some estimate 
of the accuracy of the c-vector approximation; this defines our “first order error”). 
If the overall accuracy in the eigenvalue is no better than that of the c-vector 
(i.e., first order), then we would guess that the accuracy of the d-vector approxima- 
tion was essentially nil (i.e., order of 100% error). We shall shortly try to see this 
in some example. On the other hand, if we start with some given c-vector approxi- 
mation sequence but have at our disposal the various methods of building the 
matrix B, we might be drawn to try to select a method that gives a self-adjoint 
matrix B, for then the d-vector is the same as the c-vector and we could expect 
the better second order accuracy. Thus the reliance on symmetric equations (as 
promulgated in Ref. 2) represents not really a great ideal, but rather a reasonable 
guide when any further analysis is absent. This discussion suggests why the 
improved calculation of the NTD method in Ref. 2 worked well, but it also suggests 
that there may be other (even better or simpler) ways of gaining the objective of 
better convergence for that technique. 

(It should not be inferred here that the recursion methods are intrinsically 
inferior to the variational methods. Given a good set of expansion functions, the 
74 7( , one can reduce the accuracy of the variational method by using some very 
poor set of weight functions u,--the dual set here. However, having in mind from 
the outset that one must choose two sets, one will probably choose them both 
wisely and get “second-order good” results. On the other hand, if one approaches 
the recursion method without realizing the role played by the dual vector, a great 
deal of accuracy may be needlessly lost.) 
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To illustrate the importance of the dual vector in the recursion method, we 
return to the square well problem and the expansion (A24). The dual of the recur- 
sion formula (A25) is 

4@’ - 1) DG-l - 2~‘(2/ - 1) DE + 2EDc+, = 0, L = 1, 2,..., (A36) 

and if we interpret this as the direct recursion formula for an expansion of the 
original wavefunction as 

x = 1 Dtvt 3 (A371 
G=l 

we find the behavior 
vt s const. (1 - x2)-L. (‘438) 

This represents an extremely ill-chosen basis and explains why this dual vector 
does nothing to raise the convergence rate above the “first-order” rate which we 
observed. 

This sort of result might be seen by the following alternative approach. We 
showed above that the recursion method was equivalent to a moments method 
with the functions v, chosen so that 

<%L I %I> = La * (A39 

If, as above, the basis functions u, are simply powers of a single variable 

4% - yn, 

then the appropriately orthogonal functions v, may be represented as 

1 
-d nz 6(y). v ---- 

c 1 “-m! dy (A401 

This is a very singular function [as is (A38) in the above example where y = (1 - x2)], 
and again we would guess that this dual basis adds nothing to the first-order 
convergence rate. 

One might expect that as the original u,, basis was gradually modified from 
simple powers to orthogonal polynomials, one would see the corresponding 
smooth improvement in the nature of the dual basis and smooth improvement of 
the convergence rate. However, we have no example to demonstrate this. 

APPENDIX V. THE ILL-CONDITIONED PROBLEM IN THE METHOD OF MOMENTS 

In our analysis of the method of moments we noted that (x [ I$) should not 
vanish if we wished to obtain second-order accuracy for the eigenvalue, and in 



El *HII -y + O(E) 
22 

6442) 

Thus the eigenvalue E, behaves badly, but El seems to be quite reasonable, and 
this is the answer we are interested in if indeed the 1 x 1 approximation was close. 
The indicated conclusion is that the vanishing eigenvalue of the metric matrix 
does not completely wreck the calculation, but we have not been able to see why 
we did in our (1,3) example lose the second-order accuracy which was expected. 
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